COURSE INFORMATION						
Course TitleCodeSemesterL+P HourCreditsECTS						
Deep Learning	CSE588	1	3	3	10	

Dronoguicitos	The students are advised to take "CSE 585 Machine Learning" or "CSE
Prerequisites	562 Artificial Intelligence" courses.

Language of Instruction	English
Course Level	Graduate
Course Type	Elective
Course Coordinator	
Instructors	Assist.Prof.Dr. Dionysis Goularas Prof.Dr. Emin Erkan Korkmaz
Assistants	
Goals	The aim of this course is to provide students the knowledege about the basic techniques and methodologies of Deep Learning and abilities to apply Deep Learning methods on practical problems.
Content	Applied Mathematics for Deep Learning, Machine Learning Basics, Deep Feedforward Networks, Regularization for Deep Learning, Convolutional Neural Networds, Recurrent Neural Networks, LSTM, Autoencoders, Structured Probabilistic Models, Deep Generative Models, Boltzman Machines.

Course	e Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1)	Knowledge about the basic methodologies in deep learning.	3	1,2	A,C,D
2)	Ability to use knowledge to formulate, and solve practical problems using deep learning techniques.	2	1,2,4	A,C

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Lab, 4: Case-study
Assessment Methods:	A: Testing, B: Experiment, C: Homework, D: Project

COURSE CONTENT				
Week	Topics	Study Materials		
1	Introduction	Textbook		
2	Applied Mathematics for Deep Learning	Textbook		
3	Machine Learning Basics	Textbook		
4	Deep Feedforward Networks, Regularization for Deep Learning	Textbook		
5	Autoencoders	Textbook		
6	Convolutional Neural Networks	Textbook		
7	Deep Learning Applications: Image Processing with CNNs	Textbook		
8	Recurrent Neural Nets and LSTMs	Textbook		
9	Deep Learning Applications: Natural Language Processing with LSTMs	Textbook		
10	Midterm	Textbook		
11	Structured Probabilistic Models for Deep Learning	Textbook		
12	Deep Generative Models: Bolztman Machines	Textbook		
13	Deep Reinforcement Learning	Textbook		
14	Project presentations	Textbook		

RECOMMENDED SOURCES					
Textbook	Deep Learning, MIT Press, By Ian Goodfellow and Yoshua Bengio and Aaron Courville (2016)				
Additional ResourcesHands-On Machine Learning with Scikit-Learn and TensorFlow, O'Reilly Media, By Aurélien Géron (2017)					
MATERIAL SHARING					
Documents					
Assignments	Assignments				
Exams					
ACCECCMENT					

Exams			
	ASSESSMENT		
	IN-TERM STUDIES	NUMBER	PERCENTAGE
Assignment		1	10
Project		1	50
Midterm		1	40
	Total		100

CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	40
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE	60
Total	100

COURSE CATEGORY

Expertise/Field Courses

COURSE'S CONTRIBUTION TO PROGRAM						
No. Program Learning Outcomes		Contribution				
140				3	4	5
1	Ability to reach wide and deep knowledge through scientific research in the field of Computer Science and Engineering, evaluate, interpret and apply.			Х		
2	Ability to use scientific methods to cover and apply limited or missing knowledge, and to integrate the knowledge of different disciplines.					
3	Ability to construct Computer Science and Engineering problems, develop methods to solve the problems and use innovative methods in the solution.				Х	
4	Ability to develop new and/or original ideas and algorithm; develop innovative solutions in the design of system, component or process.			Х		
5	Ability to have extensive knowledge about current techniques and methods applied in Computer Engineering and their constraints.				Х	
6	Ability to design and implement analytical modeling and experimental research, solve and interpret complex situations encountered in the process.					
7	Ability to use a foreign language (English) at least at the level of European Language Portfolio B2 in verbal and written communication.					
8	Ability to lead in multidisciplinary teams, develop solutions to complex situations and take responsibility.					
9	Ability to pass process and the results in Computer Science and Engineering field, in national and international area in or outside of the field, systematically and clearly in written or oral form.					
10	Awareness of the social, legal, ethical and moral values, and the ability to conduct research and implementation work within the framework of these values.					
11	Awareness of the new and emerging applications in Computer Science and Engineering field, and the ability to examine them and learn if necessary.					
12	Ability to describe the social and environmental dimensions of Computer Science and Engineering applications.					

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTIONActivitiesQuantityDuration
(Hour)Total
Workload
(Hour)Course Duration14342

Hours for off-the-classroom study (Pre-study, practice)		6	84
Project	1	80	80
Assignment	1	30	30
Midterm Examination		3	3
Final examination		3	3
Total Work Load			242
Total Work Load / 25 (h)			9.68
ECTS Credit of the Course			10